Instrukcja korzystania z Biblioteki

### Serwisy:

Ukryty Internet | Wyszukiwarki specjalistyczne tekstów i źródeł naukowych | Translatory online | Encyklopedie i słowniki online

### Translator:

Kosmos
Astronomia Astrofizyka
Inne

Kultura
Sztuka dawna i współczesna, muzea i kolekcje

Metoda
Metodologia nauk, Matematyka, Filozofia, Miary i wagi, Pomiary

Materia
Substancje, reakcje, energia
Fizyka, chemia i inżynieria materiałowa

Człowiek
Antropologia kulturowa Socjologia Psychologia Zdrowie i medycyna

Wizje
Przewidywania Kosmologia Religie Ideologia Polityka

Ziemia
Geologia, geofizyka, geochemia, środowisko przyrodnicze

Życie
Biologia, biologia molekularna i genetyka

Cyberprzestrzeń
Technologia cyberprzestrzeni, cyberkultura, media i komunikacja

Działalność
Wiadomości | Gospodarka, biznes, zarządzanie, ekonomia

Technologie
Budownictwo, energetyka, transport, wytwarzanie, technologie informacyjne

# PaCAL: A Python Package for Arithmetic Computations with Random Variables

Vol. 57, Issue 10, May 2014Abstract: In this paper we present PaCAL, a Python package for arithmetical computations on random variables. The package is capable of performing the four arithmetic operations: addition, subtraction, multiplication and division, as well as computing many standard functions of random variables. Summary statistics, random number generation, plots, and histograms of the resulting distributions can easily be obtained and distribution parameter ﬁtting is also available. The operations are performed numerically and their results interpolated allowing for arbitrary arithmetic operations on random variables following practically any probability distribution encountered in practice. The package is easy to use, as operations on random variables are performed just as they are on standard Python variables. Independence of random variables is, by default, assumed on each step but some computations on dependent random variables are also possible. We demonstrate on several examples that the results are very accurate, often close to machine precision. Practical applications include statistics, physical measurements or estimation of error distributions in scientiﬁc computations.

2014/05/07 - 19:44