Skip to Content

Instrukcja korzystania z Biblioteki

Serwisy:

Ukryty Internet | Wyszukiwarki specjalistyczne tekstów i źródeł naukowych | Translatory online | Encyklopedie i słowniki online

Translator:

Kosmos
Astronomia Astrofizyka
Inne

Kultura
Sztuka dawna i współczesna, muzea i kolekcje

Metoda
Metodologia nauk, Matematyka, Filozofia, Miary i wagi, Pomiary

Materia
Substancje, reakcje, energia
Fizyka, chemia i inżynieria materiałowa

Człowiek
Antropologia kulturowa Socjologia Psychologia Zdrowie i medycyna

Wizje
Przewidywania Kosmologia Religie Ideologia Polityka

Ziemia
Geologia, geofizyka, geochemia, środowisko przyrodnicze

Życie
Biologia, biologia molekularna i genetyka

Cyberprzestrzeń
Technologia cyberprzestrzeni, cyberkultura, media i komunikacja

Działalność
Wiadomości | Gospodarka, biznes, zarządzanie, ekonomia

Technologie
Budownictwo, energetyka, transport, wytwarzanie, technologie informacyjne

Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis

Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysisAtmospheric Measurement Techniques, 7, 2953-2965, 2014Author(s): E. Karnezi, I. Riipinen, and S. N. PandisOrganic compounds represent a
significant fraction of submicrometer atmospheric aerosol mass. Even if most
of these compounds are semi-volatile in atmospheric concentrations, the
ambient organic aerosol volatility is quite uncertain. The most common
volatility measurement method relies on the use of a thermodenuder (TD). The
aerosol passes through a heated tube where its more volatile components
evaporate, leaving the less volatile components behind in the particulate
phase. The typical result of a thermodenuder measurement is the mass fraction
remaining (MFR), which depends, among other factors, on the organic aerosol
(OA) vaporization enthalpy and the accommodation coefficient. We use a new
method combining forward modeling, introduction of "experimental" error,
and inverse modeling with error minimization for the interpretation of TD
measurements. The OA volatility distribution, its effective vaporization
enthalpy, the mass accommodation coefficient and the corresponding
uncertainty ranges are calculated. Our results indicate that existing
TD-based approaches quite often cannot estimate reliably the OA volatility
distribution, leading to large uncertainties, since there are many different
combinations of the three properties that can lead to similar thermograms. We
propose an improved experimental approach combining TD and isothermal
dilution measurements. We evaluate this experimental approach using the same
model, and show that it is suitable for studies of OA volatility in the lab
and the field.

Atmospheric Measurement Techniques 2014/09/20 - 18:38 Czytaj